An Introduction to Decision Making

Chapter 20

GOALS

- Define the terms state of nature, event, decision alternative, and payoff.
- Organize information in a payoff table or a decision tree.
- Find the expected payoff of a decision alternative.
- Compute opportunity loss and expected opportunity loss.
- Assess the expected value of information.

Statistical Decision Theory

- Classical statistics focuses on estimating a parameter, such as the population mean, constructing confidence intervals, or hypothesis testing.
- Statistical Decision Theory (Bayesian statistics) is concerned with determining which decision, from a set of possible decisions, is optimal.

Elements of a Decision

There are three components to any decision-making situation:

- The available choices (alternatives or acts).
- The states of nature, which are not under the control of the decision maker – uncontrollable future events.
- The payoffs needed for each combination of decision alternative and state of nature.

Decision Making

Payoff Table and Expected Payoff

A Payoff Table is a listing of all possible combinations of decision alternatives and states of nature.

The Expected Payoff or the Expected Monetary Value (*EMV*) is the expected value for each decision.

Calculating the EMV

$$EMV(A_i) = \sum [P(S_j) \cdot V(A_i, S_j)]$$

- Let A_i be the *i*th decision alternative.
- Let $P(S_i)$ be the probability of the *j*th state of nature.
- Let $V(A_i, S_j)$ be the value of the payoff for the combination of decision alternative A_i and state of nature S_i .
- Let $EMV(A_i)$ be the expected monetary value for the decision alternative A_i .

Decision Making Under Conditions of Uncertainty - Example

Bob Hill, a small investor, has \$1,100 to invest. He has studied several common stocks and narrowed his choices to three, namely, Kayser Chemicals, Rim Homes, and Texas Electronics. He estimated that, if his \$1,100 were invested in Kayser Chemicals and a strong bull market developed by the end of the year (that is, stock prices increased drastically), the value of his Kayser stock would more than double, to \$2,400. However, if there were a bear market (i.e., stock prices declined), the value of his Kayser stock could conceivably drop to \$1,000 by the end of the year. His predictions regarding the value of his \$1,100 investment for the three stocks for a bull market and for a bear market are shown below. A study of historical records revealed that during the past 10 years stock market prices increased six times and declined only four times. According to this information, the probability of a market rise is .60 and the probability of a market decline is .40.

Purchase	Bull Market, <i>S</i> 1	Bear Market, S ₂
Kayser Chemicals (A1)	\$2,400	\$1,000
Rim Homes (A ₂)	2,200	1,100
Texas Electronics (A ₃)	1,900	1,150

EMV- Example

Purchase	Bull Market, <i>S</i> 1(.60)	Bear Market, S ₂ (.40)	Expected Payoff
Kayser Chemicals (A1)	\$2,400	\$1,000	\$1,840
Rim Homes (A ₂)	2,200	1,100	1,760
Texas Electronics (A ₃)	1,900	1,150	1,600

(A1)=(.6)(\$2,400)+(.4)(\$1,000) =\$1,840(A2)=(.6)(\$2,400)+(.4)(\$1,000) =\$1,760(A3)=(.6)(\$2,400)+(.4)(\$1,000) =\$1,600

Opportunity Loss

Opportunity Loss or Regret is the loss because the exact state of nature is not known at the time a decision is made.

• The opportunity loss is computed by taking the difference between the optimal decision for each state of nature and the other decision alternatives.

Expected Opportunity Loss

EXPECTED OPPORTUNITY LOSS

 $\mathsf{EOL}(A_i) = \Sigma \left[P(S_j) \times R(A_i, S_j) \right]$

where

EOL(A_i) refers to the expected opportunity loss for a particular decision alternative. $P(S_i)$ refers to the probability associated with the states of nature *j*.

 $R(A_i, S_i)$ refers to the regret or loss for a particular combination of a state of

nature and a decision alternative.

Opportunity Loss - Example

Purchase	Bull Market, <i>S</i> 1	Bear Market, <i>S</i> 2
Kayser Chemicals (A1)	\$2,400	\$1,000
Rim Homes (A_2)	2,200	1,100
Texas Electronics (A ₃)	1,900	1,150

	Opportunity Loss		
Purchase	Market Rise	Market Decline	
Kayser Chemicals	\$ 0	\$150	
Rim Homes	200	50	
Texas Electronics	500	0	
L			

Opportunity Loss when Market Rises Kayser:

\$2,400 - \$2,400= \$0

Rim Homes: \$2,400 - \$2,200 = \$200

Texas Electronics: \$2,400 - \$1,900 = \$500

Opportunity Loss when Market Declines Kayser: \$1,150 - \$1,000= \$150

Rim Homes: \$1,150 - \$1,100 = \$50

Texas Electronics: \$1,150 - \$1,150 = \$0

Expected Opportunity Loss

EXPECTED OPPORTUNITY LOSS

 $\mathsf{EOL}(A_i) = \Sigma \left[P(S_j) \times R(A_i, S_j) \right]$

	Орро	Expected	
Purchase	0.60 Market Rise	0.40 Market Decline	Opportunity Loss
Kayser Chemicals	\$ 0	\$150	\$ 60
Rim Homes	200	50	140
Texas Electronics	500	0	300

(A1)=(.6)(\$0)+(.4)(\$150) =\$60(A2)=(.6)(\$200)+(.4)(\$50) =\$140(A3)=(.6)(\$500)+(.4)(\$0) =\$300

Maximin, Maximax, and Minimax Regret Strategies

Payoff Table

Purchase	Bull Market, <i>S</i> 1	Bear Market, <i>S</i> 2	Maximin	Maximax
Kayser Chemicals (A_1)	\$2,400	\$1,000	1,000	2,400
Rim Homes (A ₂)	2,200	1,100	1,100	2,200
Texas Electronics (A ₃)	1,900	1,150	1,150	1,900

Opportunity Loss Table

	Opport	unity Loss
Purchase	Market Rise	Market Decline
Kayser Chemicals	\$ 0	\$150
Rim Homes	200	50
Texas Electronics	500	0

Maximin, Maximax, and Minimax Regret Strategies

Maximin strategy maximizes the minimum gain. It is a pessimistic strategy.

- **Maximax strategy** maximizes the maximum gain. Opposite of a maximin approach, it is an optimistic strategy
- **Minimax regret strategy** minimizes the maximum regret (opportunity loss). This is another pessimistic strategy

Value of Perfect Information

What is the worth of information known in advance before a strategy is employed?

Expected Value of Perfect Information (*EVPI*) is the difference between the expected payoff if the state of nature were known and the optimal decision under the conditions of uncertainty.

EVPI Example

EVPI = Expected value under conditions of certainty

- Expected value under conditions of uncertainty

Step 1: Compute the Expected Value Under Certainty

State of Nature	Decision	Payoff	Probability of State of Nature	Expected Payoff
Market rise, S ₁	Buy Kayser	\$2,400	.60	\$1,440
Market decline, S_2	Buy Texas Electronics	1,150	.40	468
				\$1,900

Expected Value Under Certainty

EVPI Example

Step 2: Compute the Expected Value Under Uncertainty

Purchase	Bull Market, <i>S</i> ₁ (.60)	Bear Market, Expected $S_2 (.40)$ Payoff	
Kayser Chemicals (A1)	\$2,400	\$1,000 \$1,840	
Rim Homes (A ₂)	2,200	1,100 1,760	
Texas Electronics (A ₃)	1,900	1,150 1,600	

Step 3: Subtract the Expected Value Under Uncertainty from the Expected Value Under Certainty

- \$1,900 Expected value of stock purchased under conditions of certainty
- -1,840 Expected value of purchase (Kayser) under conditions of uncertainty
- \$ 60 Expected value of perfect information

Sensitivity Analysis and Decision Trees

- Sensitivity Analysis examines the effects of various probabilities for the states of nature on the expected values for the decision alternatives.
- Decision Trees are useful for structuring the various alternatives. They present a picture of the various courses of action and the possible states of nature.

Decision Tree

- A **decision tree** is a picture of all the possible courses of action and the consequent possible outcomes.
 - A box is used to indicate the point at which a decision must be made,
 - The branches going out from the box indicate the alternatives under consideration

End of Chapter 20